链表

内存空间是所有程序的公共资源,在一个复杂的系统运行环境下,空闲的内存空间可能散落在内存各处。我们知道,存储数组的内存空间必须是连续的,而当数组非常大时,内存可能无法提供如此大的连续空间。此时链表的灵活性优势就体现出来了。

链表(linked list)是一种线性数据结构,其中的每个元素都是一个节点对象,各个节点通过“引用”相连接。引用记录了下一个节点的内存地址,通过它可以从当前节点访问到下一个节点。

链表的设计使得各个节点可以分散存储在内存各处,它们的内存地址无须连续。

链表定义与存储方式

观察上图,链表的组成单位是节点(node)对象。每个节点都包含两项数据:节点的“值”和指向下一节点的“引用”。

  • 链表的首个节点被称为“头节点”,最后一个节点被称为“尾节点”。
  • 尾节点指向的是“空”,它在 Java、C++ 和 Python 中分别被记为 nullnullptrNone
  • 在 C、C++、Go 和 Rust 等支持指针的语言中,上述“引用”应被替换为“指针”。

如以下代码所示,链表节点 ListNode 除了包含值,还需额外保存一个引用(指针)。因此在相同数据量下,链表比数组占用更多的内存空间

1
2
3
4
5
class ListNode:
"""链表节点类"""
def __init__(self, val: int):
self.val: int = val # 节点值
self.next: ListNode | None = None # 指向下一节点的引用

链表常用操作

初始化链表

建立链表分为两步,第一步是初始化各个节点对象,第二步是构建节点之间的引用关系。初始化完成后,我们就可以从链表的头节点出发,通过引用指向 next 依次访问所有节点。

1
2
3
4
5
6
7
8
9
10
11
12
# 初始化链表 1 -> 3 -> 2 -> 5 -> 4
# 初始化各个节点
n0 = ListNode(1)
n1 = ListNode(3)
n2 = ListNode(2)
n3 = ListNode(5)
n4 = ListNode(4)
# 构建节点之间的引用
n0.next = n1
n1.next = n2
n2.next = n3
n3.next = n4

数组整体是一个变量,比如数组 nums 包含元素 nums[0]nums[1] 等,而链表是由多个独立的节点对象组成的。我们通常将头节点当作链表的代称,比如以上代码中的链表可记作链表 n0

插入节点

在链表中插入节点非常容易。如下图所示,假设我们想在相邻的两个节点 n0n1 之间插入一个新节点 P则只需改变两个节点引用(指针)即可,时间复杂度为 O(1)O(1)

相比之下,在数组中插入元素的时间复杂度为 O(n)O(n) ,在大数据量下的效率较低。

链表插入节点示例

1
def insert(n0: ListNode, P: ListNode):
""" 在链表的节点n0 之后插入节点P"""
    n1 = n0.next
    P.next = n1
    n0.next = P

删除节点

如下图所示,在链表中删除节点也非常方便,只需改变一个节点的引用(指针)即可

请注意,尽管在删除操作完成后节点 P 仍然指向 n1 ,但实际上遍历此链表已经无法访问到 P ,这意味着 P 已经不再属于该链表了。

链表删除节点

1
2
def remove(n0: ListNode):
""" 删除链表的节点n0 之后的首个节点"""
    if not n0.next:
        return
    # n0 -> P -> n1
    P = n0.next
    n1 = P.next
# 合并上式为n1 = no.next.next,可以取消设置变量P n0.next = n1

访问节点

在链表中访问节点的效率较低。如上一节所述,我们可以在 O(1)O(1) 时间下访问数组中的任意元素。链表则不然,程序需要从头节点出发,逐个向后遍历,直至找到目标节点。也就是说,访问链表的第 ii 个节点需要循环 i1i - 1 轮,时间复杂度为 O(n)O(n)

1
2
def access(head: ListNode, index: int) -> ListNode | None:
""" 访问链表中索引为index 的节点""" for _ in range(index): if not head: return None head = head.next return head

查找节点

遍历链表,查找其中值为 target 的节点,输出该节点在链表中的索引。此过程也属于线性查找。代码如下所示:

1
def find(head: ListNode, target: int) -> int:
    """ 在链表中查找值为target 的首个节点"""
    index = 0
    while head:
        if head.val == target:
            return index
        head = head.next
        index += 1
    return -1

数组 vs. 链表

下表总结了数组和链表的各项特点并对比了操作效率。由于它们采用两种相反的存储策略,因此各种性质和操作效率也呈现对立的特点。

  数组与链表的效率对比

数组 链表
存储方式 连续内存空间 分散内存空间
容量扩展 长度不可变 可灵活扩展
内存效率 元素占用内存少、但可能浪费空间 元素占用内存多
访问元素 O(1)O(1) O(n)O(n)
添加元素 O(n)O(n) O(1)O(1)
删除元素 O(n)O(n) O(1)O(1)

常见链表类型

如下图所示,常见的链表类型包括三种。

  • 单向链表:即前面介绍的普通链表。单向链表的节点包含值和指向下一节点的引用两项数据。我们将首个节点称为头节点,将最后一个节点称为尾节点,尾节点指向空 None
  • 环形链表:如果我们令单向链表的尾节点指向头节点(首尾相接),则得到一个环形链表。在环形链表中,任意节点都可以视作头节点。
  • 双向链表:与单向链表相比,双向链表记录了两个方向的引用。双向链表的节点定义同时包含指向后继节点(下一个节点)和前驱节点(上一个节点)的引用(指针)。相较于单向链表,双向链表更具灵活性,可以朝两个方向遍历链表,但相应地也需要占用更多的内存空间。
1
2
3
4
5
6
class ListNode:
"""双向链表节点类"""
def __init__(self, val: int):
self.val: int = val # 节点值
self.next: ListNode | None = None # 指向后继节点的引用
self.prev: ListNode | None = None # 指向前驱节点的引用

常见链表种类

链表典型应用

单向链表通常用于实现栈、队列、哈希表和图等数据结构。

  • 栈与队列:当插入和删除操作都在链表的一端进行时,它表现的特性为先进后出,对应栈;当插入操作在链表的一端进行,删除操作在链表的另一端进行,它表现的特性为先进先出,对应队列。
  • 哈希表:链式地址是解决哈希冲突的主流方案之一,在该方案中,所有冲突的元素都会被放到一个链表中。
  • :邻接表是表示图的一种常用方式,其中图的每个顶点都与一个链表相关联,链表中的每个元素都代表与该顶点相连的其他顶点。

双向链表常用于需要快速查找前一个和后一个元素的场景。

  • 高级数据结构:比如在红黑树、B 树中,我们需要访问节点的父节点,这可以通过在节点中保存一个指向父节点的引用来实现,类似于双向链表。
  • 浏览器历史:在网页浏览器中,当用户点击前进或后退按钮时,浏览器需要知道用户访问过的前一个和后一个网页。双向链表的特性使得这种操作变得简单。
  • LRU 算法:在缓存淘汰(LRU)算法中,我们需要快速找到最近最少使用的数据,以及支持快速添加和删除节点。这时候使用双向链表就非常合适。

环形链表常用于需要周期性操作的场景,比如操作系统的资源调度。

  • 时间片轮转调度算法:在操作系统中,时间片轮转调度算法是一种常见的 CPU 调度算法,它需要对一组进程进行循环。每个进程被赋予一个时间片,当时间片用完时,CPU 将切换到下一个进程。这种循环操作可以通过环形链表来实现。
  • 数据缓冲区:在某些数据缓冲区的实现中,也可能会使用环形链表。比如在音频、视频播放器中,数据流可能会被分成多个缓冲块并放入一个环形链表,以便实现无缝播放。