全排列问题

全排列问题是回溯算法的一个典型应用。它的定义是在给定一个集合(如一个数组或字符串)的情况下,找出其中元素的所有可能的排列。

下表列举了几个示例数据,包括输入数组和对应的所有排列。

  全排列示例

输入数组 所有排列
[1][1] [1][1]
[1,2][1, 2] [1,2],[2,1][1, 2], [2, 1]
[1,2,3][1, 2, 3] [1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1][1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]

无相等元素的情况

question

输入一个整数数组,其中不包含重复元素,返回所有可能的排列。

从回溯算法的角度看,我们可以把生成排列的过程想象成一系列选择的结果。假设输入数组为 [1,2,3][1, 2, 3] ,如果我们先选择 11 ,再选择 33 ,最后选择 22 ,则获得排列 [1,3,2][1, 3, 2] 。回退表示撤销一个选择,之后继续尝试其他选择。

从回溯代码的角度看,候选集合 choices 是输入数组中的所有元素,状态 state 是直至目前已被选择的元素。请注意,每个元素只允许被选择一次,因此 state 中的所有元素都应该是唯一的

如下图所示,我们可以将搜索过程展开成一棵递归树,树中的每个节点代表当前状态 state 。从根节点开始,经过三轮选择后到达叶节点,每个叶节点都对应一个排列。

全排列的递归树

重复选择剪枝

为了实现每个元素只被选择一次,我们考虑引入一个布尔型数组 selected ,其中 selected[i] 表示 choices[i] 是否已被选择,并基于它实现以下剪枝操作。

  • 在做出选择 choice[i] 后,我们就将 selected[i] 赋值为 True\text{True} ,代表它已被选择。
  • 遍历选择列表 choices 时,跳过所有已被选择的节点,即剪枝。

如下图所示,假设我们第一轮选择 1 ,第二轮选择 3 ,第三轮选择 2 ,则需要在第二轮剪掉元素 1 的分支,在第三轮剪掉元素 1 和元素 3 的分支。

全排列剪枝示例

观察上图发现,该剪枝操作将搜索空间大小从 O(nn)O(n^n) 减小至 O(n!)O(n!)

代码实现

想清楚以上信息之后,我们就可以在框架代码中做“完形填空”了。为了缩短整体代码,我们不单独实现框架代码中的各个函数,而是将它们展开在 backtrack() 函数中:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
def backtrack(
state: list[int], choices: list[int], selected: list[bool], res: list[list[int]]
):
"""回溯算法:全排列 I"""
# 当状态长度等于元素数量时,记录解
if len(state) == len(choices):
res.append(list(state))
return
# 遍历所有选择
for i, choice in enumerate(choices):
# 剪枝:不允许重复选择元素
if not selected[i]:
# 尝试:做出选择,更新状态
selected[i] = True
state.append(choice)
# 进行下一轮选择
backtrack(state, choices, selected, res)
# 回退:撤销选择,恢复到之前的状态
selected[i] = False
state.pop()


def permutations_i(nums: list[int]) -> list[list[int]]:
"""全排列 I"""
res = []
backtrack(state=[], choices=nums, selected=[False] * len(nums), res=res)
return res

考虑相等元素的情况

question

输入一个整数数组,**数组中可能包含重复元素**,返回所有不重复的排列。

假设输入数组为 [1,1,2][1, 1, 2] 。为了方便区分两个重复元素 11 ,我们将第二个 11 记为 1^\hat{1}

如下图所示,上述方法生成的排列有一半是重复的。

重复排列

那么如何去除重复的排列呢?最直接地,考虑借助一个哈希集合,直接对排列结果进行去重。然而这样做不够优雅,因为生成重复排列的搜索分支没有必要,应当提前识别并剪枝,这样可以进一步提升算法效率。

相等元素剪枝

观察下图,在第一轮中,选择 11 或选择 1^\hat{1} 是等价的,在这两个选择之下生成的所有排列都是重复的。因此应该把 1^\hat{1} 剪枝。

同理,在第一轮选择 22 之后,第二轮选择中的 111^\hat{1} 也会产生重复分支,因此也应将第二轮的 1^\hat{1} 剪枝。

从本质上看,我们的目标是在某一轮选择中,保证多个相等的元素仅被选择一次

重复排列剪枝

代码实现

在上一题的代码的基础上,我们考虑在每一轮选择中开启一个哈希集合 duplicated ,用于记录该轮中已经尝试过的元素,并将重复元素剪枝:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
def backtrack(
state: list[int], choices: list[int], selected: list[bool], res: list[list[int]]
):
"""回溯算法:全排列 II"""
# 当状态长度等于元素数量时,记录解
if len(state) == len(choices):
res.append(list(state))
return
# 遍历所有选择
duplicated = set[int]()
for i, choice in enumerate(choices):
# 剪枝:不允许重复选择元素 且 不允许重复选择相等元素
if not selected[i] and choice not in duplicated:
# 尝试:做出选择,更新状态
duplicated.add(choice) # 记录选择过的元素值
selected[i] = True
state.append(choice)
# 进行下一轮选择
backtrack(state, choices, selected, res)
# 回退:撤销选择,恢复到之前的状态
selected[i] = False
state.pop()
# 不能有duplicated.pop(),因为是在一个for循环中有一个duplicated,记录的是这轮循环中哪些元素被选择过,如果在循环内add进来之后在pop出去就没有意义了


def permutations_ii(nums: list[int]) -> list[list[int]]:
"""全排列 II"""
res = []
backtrack(state=[], choices=nums, selected=[False] * len(nums), res=res)
return res

假设元素两两之间互不相同,则 nn 个元素共有 n!n! 种排列(阶乘);在记录结果时,需要复制长度为 nn 的列表,使用 O(n)O(n) 时间。因此时间复杂度为 O(n!n)O(n!n)

最大递归深度为 nn ,使用 O(n)O(n) 栈帧空间。selected 使用 O(n)O(n) 空间。同一时刻最多共有 nnduplicated ,使用 O(n2)O(n^2) 空间。因此空间复杂度为 O(n2)O(n^2)

两种剪枝对比

请注意,虽然 selectedduplicated 都用于剪枝,但两者的目标不同。

  • 重复选择剪枝:整个搜索过程中只有一个 selected 。它记录的是当前状态中包含哪些元素,其作用是避免某个元素在 state 中重复出现。
  • 相等元素剪枝:每轮选择(每个调用的 backtrack 函数)都包含一个 duplicated 。它记录的是在本轮遍历(for 循环)中哪些元素已被选择过,其作用是保证相等元素只被选择一次。

下图展示了两个剪枝条件的生效范围。注意,树中的每个节点代表一个选择,从根节点到叶节点的路径上的各个节点构成一个排列。

两种剪枝条件的作用范围