堆排序

堆排序(heap sort)是一种基于堆数据结构实现的高效排序算法。我们可以利用已经学过的“建堆操作”和“元素出堆操作”实现堆排序。

  1. 输入数组并建立小顶堆,此时最小元素位于堆顶。
  2. 不断执行出堆操作,依次记录出堆元素,即可得到从小到大排序的序列。

以上方法虽然可行,但需要借助一个额外数组来保存弹出的元素,比较浪费空间。在实际中,我们通常使用一种更加优雅的实现方式。

算法流程

设数组的长度为 nn ,堆排序的流程如下图所示。

  1. 输入数组并建立大顶堆。完成后,最大元素位于堆顶。
  2. 将堆顶元素(第一个元素)与堆底元素(最后一个元素)交换。完成交换后,堆的长度减 11 ,已排序元素数量加 11
  3. 从堆顶元素开始,从顶到底执行堆化操作(sift down)。完成堆化后,堆的性质得到修复。
  4. 循环执行第 2. 步和第 3. 步。循环 n1n - 1 轮后,即可完成数组排序。

实际上,元素出堆操作中也包含第 2. 步和第 3. 步,只是多了一个弹出元素的步骤。

堆排序步骤

heap_sort_step2

heap_sort_step3

heap_sort_step4

heap_sort_step5

heap_sort_step6

heap_sort_step7

heap_sort_step8

heap_sort_step9

heap_sort_step10

heap_sort_step11

heap_sort_step12

在代码实现中,我们使用了与“堆”章节相同的从顶至底堆化 sift_down() 函数。值得注意的是,由于堆的长度会随着提取最大元素而减小,因此我们需要给 sift_down() 函数添加一个长度参数 nn ,用于指定堆的当前有效长度。代码如下所示:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
def sift_down(nums: list[int], n: int, i: int):
"""堆的长度为 n ,从节点 i 开始,从顶至底堆化"""
while True:
# 判断节点 i, l, r 中值最大的节点,记为 ma
l = 2 * i + 1
r = 2 * i + 2
ma = i
if l < n and nums[l] > nums[ma]:
ma = l
if r < n and nums[r] > nums[ma]:
ma = r
# 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出
if ma == i:
break
# 交换两节点
nums[i], nums[ma] = nums[ma], nums[i]
# 循环向下堆化
i = ma
1
2
3
4
5
6
7
8
9
10
11
12
13
def heap_sort(nums: list[int]):
"""堆排序"""
# 建堆操作:堆化除叶节点以外的其他所有节点
for i in range(len(nums) // 2 - 1, -1, -1):
sift_down(nums, len(nums), i)
# 从堆中提取最大元素,循环 n-1 轮
for i in range(len(nums) - 1, 0, -1):
# 交换根节点与最右叶节点(交换首元素与尾元素)
nums[0], nums[i] = nums[i], nums[0]
# 以根节点为起点,从顶至底进行堆化
sift_down(nums, i, 0)


算法特性

  • 时间复杂度为 O(nlogn)O(n \log n)、非自适应排序:建堆操作使用 O(n)O(n) 时间。从堆中提取最大元素的时间复杂度为 O(logn)O(\log n) ,共循环 n1n - 1 轮。
  • 空间复杂度为 O(1)O(1)、原地排序:几个指针变量使用 O(1)O(1) 空间。元素交换和堆化操作都是在原数组上进行的。
  • 非稳定排序:在交换堆顶元素和堆底元素时,相等元素的相对位置可能发生变化。